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Complementary bounds on phase shifts 

N. ANDERSON, A. M. ARTHURS and P. D. ROBINSON 
Department of Mathematics, University of York, Heslington, York, YO1 5DD, 
England 
MS.  received 20th April 1970, in revised form 19th June 1970 

Abstract. Upper and lower bounds on phase shifts for scattering by short- 
range potentials are presented. Their derivation is based on complementary 
variational principles for a certain class of linear operator equations. The  well- 
known Schwinger bound is obtained from this approach together with its 
complementary bound which appears to be new. The results are illustrated 
with calculations for a positive step potential. 

1. Introduction 
I n  a recent paper (Anderson et al. 1970-to be referred to as I) complementary 

upper and lower bounds were derived on scattering lengths for static potentials. 
The  basic idea was to identify in turn both the differential and integral equations 
describing zero-energy potential scattering with a general linear equation 

(Q+ T"T)+ = f 

where Q is a symmetric positive-definite operator and T is a linear operator with 
adjoint T". Then complementary variational principles associated with such equations 
(cf. Arthurs 1969, Robinson 1969) led to the bounds. In  the present paper we see that 
some of the analysis can be extended to the case when the energy is not zero but 
+A2,  to yield complementary bounds on phase shifts. For simplicity we restrict 
ourselves to s-waves, but analogous results with any L quantum number can be 
obtained. 

It seems that for non-zero K only the integral equation for scattering is suitable 
for the complementary variational principle theory, and as in I we need to assume that 
the potential is of one sign. One of the bounds obtained is Schwinger's (1947,1950), 
but the complementary bound appears to be new. When the phase shift is sufficiently 
small the bounds are global, but for phases in the second or third quadrants they are 
local, i.e. third-order terms have to be neglected. Further, in these quadrants we 
need to work with functionals which are constrained to be stationary with respect to 
variation in the amplitude of the trial function. Illustrative results are presented for 
scattering by a positive step potential. 

Since phase shifts can now be readily calculated numerically for one-dimensional 
problems, the interest here is primarily theoretical. However it may prove feasible 
to extend the ideas to less tractable multi-channel situations. Our methods are different 
from those of Sugar and Blankenbecler (1964). 

2. Preliminary theory 
The s-wave +(Y) can be regarded as the solution of the differential equation 

(p(y)-d2/dy2-K2}+(r) = 0, 0 < Y < 03 
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subject to the conditions 

+ ( O )  = 0 (3) 
$(Y) - A(k) coskr - k- l  sinkr (4) 

P(Y> = (zm/fi”VV(r> (5)  

as Y -+ CO. 

Here 

where V(r) is a short-range potential and m is the mass of the scattered particle. 
If the phase shift is 7 ,  the factor A(k) in (4) is given by 

A(k) = - k - l  tan7 = - k - l  sinkrp(r) +(Y) dr. ( 6 )  I,̂  
We have chosen the normalization in (4) and (6) because this leads to bounds for 
A(k) which, as K tends to zero, go over to those derived in I on the scattering length 

When p is positive we can formally identify equation (2) with equation (1 )  by 
A(O)* 

taking 

However, the resulting singularities in T and T* could destroy the meaning of certain 
integrals which arise in the theory of the complementary variational principles. Thus 
the differential equation for scattering does not seem to be directly adaptable to the 
theory, as it is when k = 0. The  negative term ( -k2) in the operator spoils things. 

It seems then that we should turn to the integral equation for +(r) ,  which is 

Q = p, T = d/dr + k tankr, T” = - d/dr + k tankr. ( 7 )  

n w  

+ ( Y )  + k - l  I sin(kr,) cos(kr,)p(s)+(s) ds = - k - l  sinkr (8) 
J O  

where 
Y, = min{r, s}, r ,  = max{y, s}. (9) 

When T and T* are integral operators on (0, co) the complementary bounds associated 
with equation (1) are (see I) 

and 

G(TQ2) = J(Q,)+ Im {(Q+ T*T)Q2-f}Q-1{(Q+T*T)Q2-f}dr .  (13) 

The  trial functions Ql and Q2 need satisfy no special conditions, but the nearer they 
are to the exact solution 4 the closer the bounds will be to I($). 

0 

It is convenient to rewrite equation (8) in the form 

@+K)+ = -k-lsinkrp(r) (14) 
where K is the symmetric integral operator with kernel 

k-lp(r) sin(kr,) cos(kr,)p(s) (15) 
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and to consider the possibility of making the identification 

Then with 
r t (p+K)  = Q+T*T. 

f = k - l  sinkrp(r) 

we shall have, from (6) and (ll),  

and so from (10) the possibility of bounds on the phase shift. 

3. Bounds with positive potentials when 0 > y1 > -x /2  
Let us suppose first that p is positive. The  symmetric operator K is not positive- 

definite, but the operator ( p + K )  may be. As a corollary to Lemma 1, proved in the 
Appendix, we have the following result : 

Lemma 1'. If p > 0 and 0 > rl > -n /2 ,  then ( p + K )  is positive-definite, 
Now choose a positive number y such that 

O < y < l  (19) 

(20) 

and let ( ( y )  be the phase of the s-wave for potential p/y so that = (( 1). Then 

0 > rl > S(Y) 
since ((7) is an increasing function of y when p is positive (see Appendix 1). If we 
replacep by ply in Lemma l', we see that the operator ( ~ - l p + y - ~ K ) - a n d  therefore 
also the operator (yp + K)-is positive-definite if 

p > 0, 0 > ( ( y )  > -7712. (21) 
Thus if conditions (21) hold, we can set 

where 

and 

The  explicit forms of T and T" are not required; the operator (yp+K) is symmetric 
and positive-definite, and as such can be written in the form T*T for some T and T* 
(Mikhlin 1964). We obtain from equations (10)-(13) the bounds 

where 
A-(@1; k) d A@) d A+(@2; k) (25) 

A-(@. , ; k )  = - @ , ( p + K ) @ ,  dr-  2k-1sinkrp(r)@1 dr (26) i," 
m 

s," 
and 

A + ( @ , ; k )  = . A - ( Q 2 ; k ) + ( l - y ) - l /  { ( p + K ) ~ 2 + i z - 1 s i n k r p ) 2 p - 1 d r .  (27) 

The existence of the bound A-  merely depends on the operator ( p + K )  being 
positive-definite. If we consider A - (cQ1) and maximize with respect to the amplitude 
c, we recover Schwinger's (1947) bound: see equation (34) below. 

0 
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The  bound A +  depends on there being a suitable y for which conditions (19) 
and (21) hold. It follows from (27)  that the most favourable value of y is zero. This 
choice is only possible if - 

I ,  

lim { ( y )  > -- 
v 1 0  2 

a criterion which is not in general easy to test. There will always be some value of 
y for which A, is a bound if 0 > 7 > -97-12, but it is difficult to determine it in 
advance. 

4. Bounds with negative potentials when 0 < q < rc/2 
There are results similar to those in 93 which hold when p is negative. We have 

as a corollary to Lemma 2 (see Appendix 2): 

Lemma 2'. If p < 0 and 0 < r ]  < 97-12, then - (p+K)  is positive-definite. With the 
same meanings for y and 5, it follows that - (p + K )  is positive-definite if 

p < 0, 0 < { < 97-12. (29) 
If these conditions hold we can set 

where 

and 

- ( p + K )  = Q+T*T 

Q = - ( l -y)P > O 

T*T = - (yp+K) .  

This decomposition leads to the complementary bounds 

- A-(@l;  k) < - A ( k )  < -A+(@2; k) (33) 
where A -  and A +  are given by expressions (26) and (27) .  

5. Bounds when n/2 < 191 < rc 
The amplitude-optimized forms of A-(&.,) and A+(c@,) (with zero y )  are 

and 

(35) 

m (1; k - l  sinkrK@, dr 
A+(@2)  = 1 k-2sin2kkrpdr- 1," K@2(p-1+K-1)K@2 dr ' 0 

It can be proved that if third-order terms in (al - 4) and (a2 - +) can be neglected, 
A- and A+ provide complementary local bounds on A as follows: 

A-(Q1;k)  < A(k) 6 A+(a2 ;k )  whenp > 0 and -T < r ]  < - ~ / 2  (36) 

- A - ( O 1 ; k )  6 -A(k )  < - -A+(o2;k)  whenp  < 0 and 97- > r] > 97-/2. (37) 
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These results for Schwinger's functional A- were established by Kat0 (195 1). 
Expansion of (34) yields 

A-(@l)-A = - j," (@1-4)Q(@1-4) dYfYl(4, @1-+~ll@1-+l12 (38) 
where 

Y d 4 ,  @1-+) - t o  as lI@1-+li - t o  

Q = p + K - A - l l p k - l s i n k r )  (pk-ls inkrj  (39) 

with [ /  / I  equal to the usual L, norm of real Hilbert space, and where 

the Dirac notation I ) ( 1 being used to denote a non-local operator. Kat0 deduced 
his results from lemmas equivalent to the following: 

Lemma 1. Q is positive-definite when p > 0 and - 7~ < 7 < 0 
Lemma 2. - Q is positive-definite when p < 0 and 7~ > 7 > 0. 

(35) we find that 
The  results for the functional A+ can be established in a similar manner. From 

CO 

A+(@.,>-A = j (@,-4)KrK(@.2-+) dr+rz,(+, @.,-+~l l@2-+~l2 (40) 
0 

where 

and where 
Y. , (4> @,-+I + o  as l I@z-+l l  - t o  

00 

B = 1 K+(p- l+K- l )K+dr  = - A +  1," k - 2  sin2krp dr. (42) 
0 

I n  Appendix 3 we prove : 

Lemma 3. KI'K is positive-definite when p > 0 and - n- < 7 < - 5712 
Lemma 4. - KPK is positive-definite when p < 0 and 7~ > 7 > 77-12. 

The bounding properties of A+ in (36) and (37) now follow from the lemmas and 
the expansion (40). It should be noted that the functional A", does not provide 
bounds when 171 < n/2, except when 171 is sufficiently small for A +  itself to provide 
bounds as explained in $9 3 and 4. 

6. Summary of results 
For convenience we summarize the results at this point. 
(i) P > 0 

A-(@l; k) < A(k)  < A+(@,; k) - 7 T p  < 7 < 0 (43 1 
A-(@.,;k) < A(k)  - n < ? j < O  (44) 

(ii) p < 0 

- - A - ( Q 1 ; k )  < -A@) < - A + ( @ , ; k )  0 < 7 <7TjZ. (46) 
-A-(@>,;k)  < -A@) O < y < 7 T .  (47) 

-A@) < -A, (@,;k)  4 2  < 7 < 7 T .  (48) 
The functionals appearing here are defined in equations (6), (26), (27), (34) and (35). 
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It should be remembered that in each case A" is a special case of A, and also that there 
are reservations concerning the right-hand inequalities in (43) and (46). 

7. An illustration 
T o  illustrate the theory we have calculated the quantities 

7 -  = tan-l(-kKA"+) and q+ = tan-'(-KA"-) (49) 
for the case of the step potential 

for which the exact phase shift can be determined (Mott and Massey 1965). The  
scattered particle was chosen to have mass m = 1 a.u. and the following simple trial 
function was used : 

CD = (a coskr - K - l  sinkr)(l - e-T)  (51) 
where a is a variational parameter. This function has the correct behaviour at zero 
and infinity. Calculations have been performed for a range of values of K and the 
results are given in table 1 along with the exact values of the phase shift 7. 

Table 1. Phases q-, q and q+ for scattering by potential (50) 

k 7-  7 (exact) 7 +  (Schwinger) 

0.1 -0.0751 -0.0750 - 0.0746 
1.5 -1.1172 - 1 e1160 - 1 *lo80 
1.7 -1.2582 - 1,2616 -1.2515 
2.0 -1,4822 - 1 -4772 - 1 e4632 
3.0 -2.1713 -2,1569 -2.1077 

The  quantity 7 +  corresponds to the Schwinger functional and is an upper bound 
to q for all 7 in -v  < 7 < 0. The complementary quantity 7 -  is a lower bound 
for 7 sufficiently near zero and for - v  < 7 < -n/2, as expected from the results 
of $93-5. For 7 = -1.2616 (i.e. -72")) corresponding to K = 1.7, we see that 
7 -  fails to be a lower bound. I n  this region of 7 the operator KI'K has ceased to be 
positive-definite. For 'this example, if K < v/2 the criterion (28) actually holds 
(cf. Mott and Massey 1965), which guarantees that 7 -  is a lower bound when 7 is 
in the fourth quadrant. 

Appendix 1. The dependence of {(y) on y 

identity 
Let +(y) be the s-wave for potential ply ,  with phase <(r). If we integrate the 

from r = 0 to infinity, and make use of boundary conditions analogous to (3) and (4)) 
we obtain in the limit as Sy -+ 0 the result 
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This shows that ((7) is an increasing function of y whenp > 0, and a decreasing one 
whenp < 0. 

Appendix 2. Lemmas 1 and 2 
To prove Lemma 1 it is enough to show that the functional 

(s,"YpYdr)-' /mYi2Ydr 0 

cannot take negative values when p > 0 and - - 7 ~  < 7 < 0. Suppose to the contrary 
that it can, and let - u2 be a negative eigenvalue such that 

cl*= - W2P*. (A4) 
The functional (A3) is bounded below and so u2, if it exists, will be finite. It follows 
from (A4) that 

+ - -(1+w2)-1coskr k- lps inkr+dr  i6 
+(1+w2)-1k-1A-1sinkr k- lps inkr+dr  (A51 

(4 

1," 
for large r ,  and also that 

{ - d2 /dr2 - k2  + ( 1 + 0') - 'p}+ = 0. 

From (A6) and (AZ), the phase of #, i.e. 5( 1 + u2), is greater than 7, i.e. (( 1). However, 
from (A5), the phase of + is 7-nn (n = 0, 1, 2, ...), which leads to a contradiction 
when - - 7 ~  < 7 < 0. Thus in that situation the functional (A3) cannot take negative 
values, and so is positive-definite. 

Mutatis mutandis, Lemma 2 can be justified for negative p. 
For positive p and - n/2 < 7 < 0, i2 is positive-definite by Lemma 1. Also A is 

positive in this quadrant. Hence from (39) we see that p + K is positive definite for 
p > 0 and -v/Z < 7 < 0, which proves Lemma 1' stated in § 3. Lemma 2' follows 
in a similar way from Lemma 2. 

Appendix 3. Lemmas 3 and 4 
T o  prove Lemma 3, it is enough to show that the functional 

{ 1," (Kelp -1(K4 dr )-I s: (KB)I'(KB) dr (A71 

cannot take negative values when p > 0 and -v  > 7 > -n/2. Suppose to the 
contrary that it can and let -v2 be a negative eigenvalue such that 

rKe = -v2p-1Ke. (A81 
The  functional (A7) is bounded below and so v2, if it exists, will be finite. 
Equation (A8) simplifies to 

6' = -(1+v2)p-1KB+(Bk)-1sinkr k-ls inkrK8dr.  (A9) 
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I t  follows that, for large r, 
OD 

9 N - coskr(l+v2)J^ k-lsinkrpBdr+(Bk)-lsinkr K-lsinkrKBdr (A10) 
0 

so that the phase of 0 is 
m m 

tanv1( - k B ( l + v 2 ) J ^  0 k-lsinkr@dr(J^ 0 k-'sinkrKBdr)-'). (A l l )  

If we premultiply (A9) by K - l  sinkrp and integrate, we obtain the relation 

1," k - l  sinkr p 9  dr = k-2sin2kr p d r  - (1 +v2) k - l  sinkrK9 dr. (A12) 

From (A12) and (42)) expression (Al l )  for the phase of 9 simplifies to 
m 

tan-I (1 +v2)2 tanq+kv2(1 +v2) 1 k - 2  sin2krp du) i 0 
(A1 3 1 

which is evidently greater than 7 when p > 0 and - 77 > 7 > - 71.12 so that tan 7 is 
positive. (We assume that v2 is small enough so that the phase of 9 is in the same 
quadrant as 7. If this is not the case, we can artificially adjust v2 in equation (AS) 
by considering the operator cry instead of I?, where cr is a small positive constant.) 

On the other hand, if we operate on equation (A9) with ( -d2/dr2-k2) the 
sinkr term is annihilated, and we see that 

{ - d2/dr2 - k2 + (1 +v2)p}9 = 0. (A141 
Thus the phase of 9 is c{( 1 +v2)  -I), which is less than q when p > 0. This contradiction 
establishes Lemma 3, and Lemma 4 can be justified in a similar manner. 
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